Effects of Carnosine (Beta-Alanyl-L-Histidine) in an Experimental Rat Model of Acute Kidney Injury Due to Septic Shock

نویسندگان

  • Sabiha Sahin
  • Dilek Burukoglu Donmez
چکیده

BACKGROUND Acute kidney injury (AKI) secondary to sepsis is a major cause of morbidity and mortality in the human intensive care unit (ICU). Kidney function and the histological findings of AKI were investigated in an experimental rat model with sepsis induced by cecal ligation and puncture (CLP) and compared with and without treatment with carnosine (beta-alanyl-L-histidine). MATERIAL AND METHODS Twenty-four Sprague-Dawley rats were randomly divided into three groups consisting eight rats in each: Group 1 - control; Group 2 - septic shock; and Group 3 - septic shock treated with carnosine. Femoral vein and artery catheterization were applied in all rats. Rats in Group 1 underwent laparotomy and catheterization. The other two groups with septic shock underwent laparotomy, CLP, catheterization, and bladder cannulation. Rats in Group 3 received an intraperitoneal (IP) injection of 250 mg/kg carnosine, 60 min following CLP. Rats were monitored for blood pressure, pulse rate, and body temperature to assess responses to postoperative sepsis, and 10 mL/kg saline replacement was administered. Twenty-four hours following CLP, rats were sacrificed, and blood and renal tissue samples were collected. RESULTS Statistically significant improvements were observed in kidney function, tissue and serum malondialdehyde levels, routine blood values, biochemical indices, and in histopathological findings in rats in Group 3 who were treated with carnosine, compared with Group 2 exposed to septic shock without carnosine treatment. CONCLUSIONS Carnosine (beta-alanyl-L-histidine) has been shown to have beneficial effects in reducing AKI due to septic shock in a rat model of septicemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renoprotective effects of l-carnosine on ischemia/reperfusion-induced renal injury in rats.

We examined the renoprotective effects of l-carnosine (beta-alanyl-l-histidine) on ischemia/reperfusion (I/R)-induced acute renal failure (ARF) in rats. Ischemic ARF was induced by occlusion of the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after contralateral nephrectomy. In vehicle (0.9% saline)-treated rats, renal sympathetic nerve activity (RSNA) was significantl...

متن کامل

Effects of lipopolysaccharide-induced septic shock on rat isolated kidney, possible role of nitric oxide and protein kinase C pathways

Objective(s): Pathophysiology of sepsis-associated renal failure (one of the most common cause of death in intensive care units) had not been fully determined. The effect of nitric oxide and protein kinase C (PKC) pathways in isolated kidney of Lipopolysaccharide-treated (LPS) rats were investigated in this study. Materials and Methods: Vascular responsiveness to phenylephrine and acetylcholine...

متن کامل

The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats

The metabolic syndrome is a risk factor that increases the risk for development of renal and vascular complications. This study addresses the effects of chronic administration of the endogenous dipeptide carnosine (β-alanyl-L-histidine, L-CAR) and of its enantiomer (β-alanyl-D-histidine, D-CAR) on hyperlipidaemia, hypertension, advanced glycation end products, advanced lipoxidation end products...

متن کامل

Cardiovascular effects of carnosine.

Carnosine (beta-alanyl-L-histidine) is an endogenous dipeptide found in various cells at millimolar concentration with its specific function(s) largely unknown. Our interests in therapeutic peptides led to the discovery that carnosine dramatically increases contractility when perfused into isolated rat hearts. Carnosine's effects are not mediated by histaminic or beta-adrenergic receptors or by...

متن کامل

Preventive Effects of Carnosine on Lipopolysaccharide-induced Lung Injury

Acute respiratory distress syndrome (ARDS) is a potentially devastating form of acute lung injury, which involves neutrophilic inflammation and pulmonary cell death. Reactive oxygen species (ROS) play important roles in ARDS development. New compounds for inhibiting the onset and progression of ARDS are required. Carnosine (β-alanyl-L-histidine) is a small di-peptide with numerous activities, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2018